

Propositional Equivalence

- Two syntactically (i.e., textually) different compound propositions may be the semantically identical (i.e., have the same meaning). We call them equivalent.

Tautologies, Contradictions, Contingencies

- Contradiction:
- The opposite to a tautology, is a compound proposition that's always false -a contradiction.
- For example: $\mathrm{p} \wedge \neg \mathrm{p}$ its own truth value is T .
- For example: $\mathrm{p} \vee \neg \mathrm{p}$ (Law of excluded middle)

Tautologies, Contradictions, Contingencies

- Contigency:
- On the other hand, a compound proposition whose truth value isn't constant is called a contingency.
- For example: $\mathrm{p} \rightarrow \neg \mathrm{p}$

Tautologies and contradictions
The easiest way to see if a compound proposition is a tautology/contradiction is to use a truth table.

p	$\neg p$	$p \wedge \neg p$
F	T	F
T	F	F

Tautology Example					
Example:					
Demonstrate that is a tautology					
$[\neg p \wedge(p \vee q)] \rightarrow q$					
I. Using a truth table - show that $[\neg p \wedge(p \vee q)] \rightarrow q$ is always true					
P	9	7 p	$p \vee q$	$\neg p \wedge(p \vee q)$	$[\neg p \wedge(p \vee q)] \rightarrow q$
T	T				
T	F				
F	T				
F	F				

Logical Equivalences

- Two compound propositions p, q are logically equivalent if their biconditional joining $p \leftrightarrow q$ is a tautology. Logical equivalence is denoted by $\mathrm{p} \Leftrightarrow \mathrm{q}$.

Logical Equivalences

- Logical Equivalence of Conditional and Contrapositive:
- The contrapositive of a logical implication is the reversal of the implication, while negating both components.
- i.e. the contrapositive of $p \rightarrow q$ is $\neg q \rightarrow \neg p$

Logical Equivalences

- Logical Equivalence of Conditional and Contrapositive:
- The easiest way to check for logical equivalence is to see if the truth tables of both variants have identical last columns:

p	q	$p \rightarrow q$	p	q	ᄀq	7 P	$\neg q \rightarrow \neg p$
T	T	T	T	T	F	F	
T	F	F	T	F	T	F	
F	T	T	F	T	F	T	
F	F	T	F	F	T	T	

Logical Equivalences

- Logical Equivalence of Conditional and Contrapositive:
- The easiest way to check for logical equivalence is to see if the truth tables of both variants have identical last columns:

Logical Equivalences

- Logical Equivalence of Conditional and Contrapositive:
- The easiest way to check for logical equivalence is to see if the truth tables of both variants have identical last columns:

\mathbf{p}	\mathbf{q}	$\mathbf{p} \rightarrow \mathbf{q}$	\mathbf{p}	\mathbf{q}	$\mathbf{q q}$	$\boldsymbol{\sim p}$	$\boldsymbol{q q} \rightarrow \boldsymbol{\mathbf { p }}$
T	T	T					
T	F	F					
F	T	T					
F	F	T					

Logical Equivalences

- Logical Equivalence of Conditional and Contrapositive:
- The easiest way to check for logical equivalence is to see if the truth tables of both variants have identical last columns:

\mathbf{p}	\mathbf{q}	$\mathbf{p} \rightarrow \mathbf{q}$	\mathbf{p}	\mathbf{q}	$\boldsymbol{\sim q}$	$\boldsymbol{\sim p}$	$\neg \mathbf{q} \rightarrow \boldsymbol{\mathbf { p }}$
T	T	T	T	T	F	F	T
T	F	F	T	F	T	F	F
F	T	T	F	T	F	T	T
F	F	T	F	F	T	T	T

Non-Equivalence of Conditional and Converse

- The converse of a logical implication is the reversal of the implication. i.e. the converse of $p \rightarrow q$ is $q \rightarrow p$.
- e.g., The converse of "If Donald is a duck then Donald is a bird." is "If Donald is a bird then Donald is a duck."

Non-Equivalence of Conditional and Converse

Non-Equivalence of Conditional and Converse

\mathbf{p}	\mathbf{q}	$\mathbf{p} \rightarrow \mathbf{q}$	$\mathbf{q} \rightarrow \mathbf{p}$	$(\mathbf{p} \rightarrow \mathbf{q}) \leftrightarrow(\mathbf{q} \rightarrow \mathbf{p})$
T	T	T	T	T
T	F	F	T	F
F	T	T	F	F
F	F	T	T	T

Derivational Proof Techniques

- When compound propositions involve more and more atomic components, the size of the truth table for the compound propositions increases
- How many rows are required to construct the truthtable of:

$$
((q \leftrightarrow(p \rightarrow r)) \wedge(\neg(s \wedge r) \vee \neg t)) \rightarrow(\neg q \rightarrow r)
$$

- 32 rows, each additional variable doubles the number of rows

Equivalence Laws

- Identity Laws:
$-\mathrm{p} \wedge \mathrm{T} \leftrightarrow \mathrm{p}$
$-p \vee F \leftrightarrow p$
- Domination Laws:
$-p \vee T \leftrightarrow T$
$-\mathrm{p} \wedge \mathrm{F} \leftrightarrow \mathrm{F}$
- Idempotent Laws:

$$
\begin{aligned}
& -p \vee p \leftrightarrow p \\
& -p \wedge p \leftrightarrow p
\end{aligned}
$$

- Double negation:
- $\neg \neg P \leftrightarrow P$

Equivalence Laws

- Commutative Laws:

$$
\begin{aligned}
& -p \vee q \leftrightarrow q \vee p \\
& -p \wedge q \leftrightarrow q \wedge p
\end{aligned}
$$

- Associative Laws:
- ($p \vee q) \vee r \leftrightarrow p \vee(q \vee r)$
$-(p \wedge q) \wedge r \leftrightarrow p \wedge(q \wedge r)$
- Distributive Laws:
$-p \vee(q \wedge r) \leftrightarrow(p \vee q) \wedge(p \vee r)$
$-p \wedge(q \vee r) \leftrightarrow(p \wedge q) \vee(p \wedge r)$

Equivalence Laws

- De Morgan's:
$\neg(p \wedge q) \leftrightarrow \neg p \vee \neg q$
$\neg(\mathrm{p} \vee \mathrm{q}) \leftrightarrow \neg \mathrm{p} \wedge \neg \mathrm{q}$
- Trivial tautology/contradiction:

$$
\begin{array}{r}
\mathrm{p} \vee \neg \mathrm{P} \leftrightarrow \mathrm{~T} \\
-\mathrm{P} \wedge \neg \mathrm{P} \leftrightarrow \mathrm{~F}
\end{array}
$$

Tautology example

Demonstrate that is a tautology using truth table of logical equivalences
$[\neg p \wedge(p \vee q)] \rightarrow q$

	TABIEG 6 Some Useful Logical Equivalences.	
- Excluded middle	$p \vee \neg p<>\mathbf{T}$	ULE 1
- Negating creates opposite	$p \wedge \neg p \Longleftrightarrow \mathbf{F}$	ULE 2
- Definition of implication in terms of Not and Or	$(p \rightarrow q) \longleftrightarrow(: p \vee q)$	ULE 3

- Definition of implication in terms of Not and Or

TABLE: 6 Some Useful Logical Equivalences.

DeMorgan Identities

- DeMorgan's identities allow for simplification of negations of complex expressions
- Conjunctional negation:
$-\neg(p 1 \wedge p 2 \wedge \ldots \wedge p n) \leftrightarrow(\neg p l \vee \neg p 2 \vee \ldots \vee \neg p n)$
- "It's not the case that all are true iff one is false."
- Disjunctional negation:
$-\neg(p l \vee p 2 \vee \ldots \vee p n) \leftrightarrow(\neg p l \wedge \neg p 2 \wedge \ldots \wedge \neg p n)$
- "It's not the case that one is true iff all are false."

Tautology by proof		
$\Leftrightarrow[(\neg p \wedge p) \vee(\neg p \wedge q)] \rightarrow q$	Distributive	

Tautology by proof

$[\neg p \wedge(p \vee q)] \rightarrow q$
$\Leftrightarrow[(\neg p \wedge p) \vee(\neg p \wedge q)] \rightarrow q$
Distributive $\Leftrightarrow[F \vee(\neg p \wedge q)] \rightarrow q$
ULE 32

Tautology by proof

$[\neg p \wedge(p \vee q)] \rightarrow q$

$\Leftrightarrow[(\neg p \wedge p) \vee(\neg p \wedge q)] \rightarrow q$	
Distributive	
$\Leftrightarrow[F \vee(\neg p \wedge q)] \rightarrow q$	ULE
$\Leftrightarrow[\neg p \wedge q] \rightarrow q$	Identity
$\Leftrightarrow \neg[\neg p \wedge q] \vee q$	ULE

Tautology by proof

Tautology by proof

$[\neg p \wedge(p \vee q)] \rightarrow q$

$\Leftrightarrow[(\neg p \wedge p) \vee(\neg p \wedge q)] \rightarrow q$	
	Distributive
$\Leftrightarrow[F \vee(\neg p \wedge q)] \rightarrow q$	
$\Leftrightarrow[\neg p \wedge q] \rightarrow q$	Identity
$\Leftrightarrow \neg[\neg p \wedge q] \vee q$	
$\Leftrightarrow[\neg(\neg p) \vee \neg q] \vee q$	ULE
$\Leftrightarrow[p \vee \neg q] \vee q$	
	DeMorgan
	Double Negation

Double Negation

Tautology by proof	
$[\neg p \wedge(p \vee q)] \rightarrow q$	
$\Leftrightarrow[(\neg p \wedge p) \vee(\neg p \wedge q)] \rightarrow q$	Distributive
$\Leftrightarrow[F \vee(\neg p \wedge q)] \rightarrow q$	ULE
$\Leftrightarrow[\neg p \wedge q] \rightarrow q$	Identity
$\Leftrightarrow \neg[\neg p \wedge q] \vee q$	ULE
$\Leftrightarrow[\neg(\neg p) \vee \neg q] \vee q$	DeMorgan
$\Leftrightarrow[p \vee \neg q] \vee q$	Double Negation
$\Leftrightarrow p \vee[\neg q \vee q]$	Associative
	${ }^{3}$

Tautology by proof	
$[\neg p \wedge(p \vee q)] \rightarrow q$	
$\Leftrightarrow[(\neg p \wedge p) \vee(\neg p \wedge q)] \rightarrow q$	Distributive
$\Leftrightarrow[F \vee(\neg p \wedge q)] \rightarrow q$	ULE
$\Leftrightarrow[\neg p \wedge q] \rightarrow q$	Identity
$\Leftrightarrow \neg[\neg p \wedge q] \vee q$	ULE
$\Leftrightarrow[\neg(\neg p) \vee \neg q] \vee q$	DeMorgan
$\Leftrightarrow[p \vee \neg q] \vee q$	Double Negation
$\Leftrightarrow p \vee[\neg q \vee q]$	Associative
$\Leftrightarrow p \vee[q \vee \neg q]$	Commutative
	${ }^{38}$

Tautology by proof

```
[\negp\wedge(p\veeq)]->q
        \Leftrightarrow[(\negp\wedgep)\vee(\negp\wedgeq)]->q
        \Leftrightarrow[F\vee(\negp\wedgeq)]->q
        \Leftrightarrow[\negp\wedgeq]->q
        \Leftrightarrow\neg[\negp\wedgeq]\veeq
        \Leftrightarrow[\neg(\negp)\vee\negq]\veeq
        \Leftrightarrow[p\vee\negq]\veeq
        \Leftrightarrowp\vee[\negq\veeq]
        \Leftrightarrowp\vee[q\vee\negq]
        \Leftrightarrowp\veeT
        Distributive
        ULE
        Identity
        ULE
        DeMorgan
        Double Negation
        Associative
        Commutative
            ULE
```


Tautology by proof

$[\neg p \wedge(p \vee q)] \rightarrow q$

$\Leftrightarrow[(\neg p \wedge p) \vee(\neg p \wedge q)] \rightarrow q$	Distributive
$\Leftrightarrow[F \vee(\neg p \wedge q)] \rightarrow q$	ULE
$\Leftrightarrow[\neg p \wedge q] \rightarrow q$	Identity
$\Leftrightarrow \neg[\neg p \wedge q] \vee q$	ULE
$\Leftrightarrow[\neg(\neg p) \vee \neg q] \vee q$	DeMorgan
$\Leftrightarrow[p \vee \neg q] \vee q$	Double Negation
$\Leftrightarrow p \vee[\neg q \vee q]$	Associative
$\Leftrightarrow p \vee[q \vee \neg q]$	Commutative
$\Leftrightarrow p \vee T$	ULE
$\Leftrightarrow T$	Domination

39

Review: Propositional Logic

- Atomic propositions: p, q, r, ...
- Boolean operators: $\neg \wedge \vee \oplus \rightarrow \leftrightarrow$
- Compound propositions: $s: \equiv(p \wedge \neg q) \vee r$
- Equivalences: $\mathrm{p} \wedge \neg \mathrm{q} \Leftrightarrow \neg(\mathrm{p} \rightarrow \mathrm{q})$
- Proving equivalences using:
- Truth tables.
- Symbolic derivations. $\mathrm{p} \Leftrightarrow \mathrm{q} \Leftrightarrow \mathrm{r} .$.

Predicate Logic

- Predicate logic is an extension of propositional logic.
- Propositional logic (recall) treats simple propositions (sentences) as atomic entities.
- In contrast, predicate logic distinguishes the subject of a sentence from its predicate.

Predicate Logic

- A predicate is a property or description of subjects in the universe of discourse.
- Aslam is tall.
- The building is structurally sound
- 17 is a prime number.

Predicate Logic

- Convention: Lowercase variables $x, y, z . .$. denote objects/entities; uppercase variables $\mathrm{P}, \mathrm{Q}, \mathrm{R} .$. . denote propositional functions (predicates)
- Applying a predicate P to an object x is the proposition $P(x)$. But the predicate P itself (e.g. $P=$ "is sleeping") is not a proposition (not a complete sentence).
- e.g. if $P(x)=$ " x is a prime number",
$P(3)$ is the proposition " 3 is a prime number."

Predicate Logic

- Quantifier Expressions:
- Quantifiers provide a notation that allows us to quantify (count) how many objects in the universe of discourse satisfy a given predicate.
- " \forall " is the $\mathrm{FOR} \forall \mathrm{LL}$ or universal quantifier. $\forall x \mathrm{P}(\mathrm{x})$ means for all x in the u.d., P holds.
- " \exists " is the \exists XISTS or existential quantifier. $\exists x P(x)$ means there exists an x in the u.d. (that is, I or more) such that $P(x)$ is true.

Predicate Logic

- The Universal Quantifier \forall :
- Example:

Let the u.d. of x be parking spaces at PIEAS.
Let $P(x)$ be the predicate " x is full."
Then the universal quantification of $P(x), \forall x P(x)$, is the proposition:

- "All parking spaces at PIEAS are full."
- i.e., "Every parking space at PIEAS is full."
- i.e., "For each parking space at PIEAS, that space is full."

Predicate Logic

- The Existential Quantifier \exists :
- Example:

Let the u.d. of x be parking spaces at PIEAS.
Let $P(x)$ be the predicate " x is full."
Then the existential quantification of $\mathrm{P}(\mathrm{x}), \exists \mathrm{x}(\mathrm{x})$, is the proposition:

- "Some parking space at PIEAS is full."
- "There is a parking space at PIEAS that is full."
- "At least one parking space at PIEAS is full."

Predicate Logic

- If $R(x, y)=$ " x relies upon y," express the following in unambiguous English:
$-\forall x(\exists y R(x, y))=\quad$ Everyone has someone to rely on.
$-\exists y(\forall x R(x, y))=$ There's someone whom everyone relies upon (including himself)!
$-\exists x(\forall y R(x, y))=$ There's some needy person who relies upon everybody (including himself).
$-\forall y(\exists x R(x, y))=$ Everyone has someone who relies upon them.
$-\forall x(\forall y R(x, y))=$ Everyone relies upon everybody, (including themselves)!

Predicate Logic

- Free Variables:
- An expression like $P(x)$ is said to have a free variable x (meaning, x is undefined).
$-P(x, y)$ has 2 free variables, x and y.
$-\forall x P(x, y)$ has I free variable, and one bound variable.
- An expression with zero free variables is a bona-fide (actual) proposition.
- An expression with one or more free variables is still only a predicate: e.g. let $\mathrm{Q}(\mathrm{y})=\forall \mathrm{x} P(\mathrm{x}, \mathrm{y})$

Predicate Logic

- Binding:
- A variable is bound if it has a value or a quantifier is

Predicate Logic

- Scope of a Quantifier:
- The scope of a quantifier is the part of the statement on which it is acting.
- Example:

$$
\underbrace{\exists x(P(x)}_{\text {scope } \mathrm{x}} \wedge Q(x)) \underbrace{\vee \forall y R(y)}_{\text {scope } \mathrm{y}}
$$

$-x$ is bound, y is free.

Predicate Logic

- Negations:
- We can also negate propositions with quantifiers.
- Two important equivalences:
$\neg \forall x P(x) \equiv \exists x \neg P(x)$
$\neg \exists x P(x) \equiv \forall x \neg P(x)$
- It is not the case that for all $x P(x)$ is true $=$ there must be an x for which $P(x)$ is not true
- It is not true that there exists an x for which $P(x)$ is true $=P(x)$ must be false for all x

Predicate Logic

- Universes of Discourse (U.D.s):
- The collection of values that a variable \times can take is called x 's universe of discourse.
- e.g., let $P(x)=" x+1>x$ ".
- We can then say, "For any number $x, P(x)$ is true" instead of - $(0+\mid>0) \wedge(1+|>|) \wedge(2+\mid>2) \wedge \ldots$

Predicate Logic

- Negation of Nested Quantifiers:
- To negate a quantifier, move negation to the right, changing quantifiers as you go.
- Example:
$\neg \forall \mathrm{x} \exists \mathrm{y} \forall \mathrm{z} \mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \equiv \exists \mathrm{x} \forall \mathrm{y} \exists \mathrm{z} \neg \mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$.
Predicate Logic
- Universes of Discourse (U.D.s):
- The collection of values that a variable x can take is
called x 's universe of discourse.
• e.g., let $\mathrm{P}(\mathrm{x})=$ " $\mathrm{x}+1>$ ".
- We can then say, "For any number $\mathrm{x}, \mathrm{P}(\mathrm{x})$ is true" instead of
• $(0+1>0) \wedge(1+1>1) \wedge(2+1>2) \wedge \ldots$

Predicate Logic

- Nesting of Quantifiers:
- Example: Let the u.d. of $x \& y$ be people.
- Let $L(x, y)=" x$ likes $y "$
- A predicate with two free variables
- Then $\exists y \mathrm{~L}(\mathrm{x}, \mathrm{y})=$ "There is someone whom x likes."
- A predicate with one free variable, x
- Then $\forall x(\exists y L(x, y))=$
"Everyone has someone whom they like."
- (A \qquad with \qquad free variables.)

Summary: Predicate Logic

- Objects x, y, z, \ldots
- Predicates $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \ldots$ are functions mapping objects x to propositions $\mathrm{P}(\mathrm{x})$.
- Multi-argument predicates $\mathrm{P}(\mathrm{x}, \mathrm{y})$.
- Quantifiers: $[\forall \mathrm{xP}(\mathrm{x})]$: \equiv "For all x 's, $\mathrm{P}(\mathrm{x})$." $[\exists \mathrm{x} P(\mathrm{x})]: \equiv$ "There is an x such that $\mathrm{P}(\mathrm{x})$."
- Universes of discourse, bound $\&$ free vars.

