
1

Propositional
Equivalence

Department of Computer & Information Sciences
Pakistan Institute of Engineering and Applied Sciences

Umar Faiz

http://www.pieas.edu.pk/umarfaiz/cis143

Discrete Mathematics

Propositional Equivalence

• Two syntactically (i.e., textually) different compound
propositions may be the semantically identical (i.e., have
the same meaning). We call them equivalent.

2

Tautologies, Contradictions, Contingencies

• Tautology:
– A compound proposition is called a tautology if no

matter what truth values its atomic propositions have,
its own truth value is T.

• For example: p ∨ ¬p (Law of excluded middle)

Tautologies, Contradictions, Contingencies

• Contradiction:
– The opposite to a tautology, is a compound

proposition that’s always false –a contradiction.
• For example: p ∧ ¬p

Tautologies, Contradictions, Contingencies

• Contigency:
– On the other hand, a compound proposition whose

truth value isn’t constant is called a contingency.
• For example: p → ¬p

Tautologies and contradictions

The easiest way to see if a compound proposition is a
tautology/contradiction is to use a truth table.

TF
¬pp

T
p ∨¬p

L3

FT T

T
F

F
T

¬pp
F
F

p ∧¬p

2

Tautology Example

Example:
Demonstrate that is a tautology

[¬p ∧(p ∨q)]→q
1. Using a truth table – show that [¬p ∧(p ∨q)]→q is

always true

L3

p q ¬p p ∨q ¬p ∧(p ∨q) [¬p ∧(p ∨q)]→q

T T

T F

F T

F F

Tautology by Truth Table

p q ¬p p ∨q ¬p ∧(p ∨q) [¬p ∧(p ∨q)]→q

T T F

L3

T F F

F T T

F F T

Tautology by Truth Table

p q ¬p p ∨q ¬p ∧(p ∨q) [¬p ∧(p ∨q)]→q

T T F T

L3

T F F T

F T T T

F F T F

Tautology by Truth Table

p q ¬p p ∨q ¬p ∧(p ∨q) [¬p ∧(p ∨q)]→q

T T F T F

L3

T F F T F

F T T T T

F F T F F

Tautology by Truth Table

p q ¬p p ∨q ¬p ∧(p ∨q) [¬p ∧(p ∨q)]→q

T T F T F T

L3

T F F T F T

F T T T T T

F F T F F T

Logical Equivalences

• Two compound propositions p, q are logically equivalent
if their biconditional joining p ↔ q is a tautology. Logical
equivalence is denoted by p ⇔ q.

3

Logical Equivalences

• Logical Equivalence of Conditional and Contrapositive:
– The contrapositive of a logical implication is the

reversal of the implication, while negating both
components.

• i.e. the contrapositive of p →q is ¬q →¬p

13

p q p →q p q ¬q ¬p ¬q→¬p

Logical Equivalences

• Logical Equivalence of Conditional and Contrapositive:
– The easiest way to check for logical equivalence is to

see if the truth tables of both variants have identical
last columns:

 p q p →q p q ¬q ¬p ¬q→¬p

T T T

T F F

F T T

F F T

Logical Equivalences

• Logical Equivalence of Conditional and Contrapositive:
– The easiest way to check for logical equivalence is to

see if the truth tables of both variants have identical
last columns:

 p q p →q p q ¬q ¬p ¬q→¬p

T T T T T F F

T F F T F T F

F T T F T F T

F F T F F T T

Logical Equivalences

• Logical Equivalence of Conditional and Contrapositive:
– The easiest way to check for logical equivalence is to

see if the truth tables of both variants have identical
last columns:

 p q p →q p q ¬q ¬p ¬q→¬p

T T T T T F F T

T F F T F T F F

F T T F T F T T

F F T F F T T T

Logical Equivalences

• Logical Equivalence of Conditional and Contrapositive:
– The easiest way to check for logical equivalence is to

see if the truth tables of both variants have identical
last columns:

 p q p →q p q ¬q ¬p ¬q→¬p

T T T T T F F T

T F F T F T F F

F T T F T F T T

F F T F F T T T

Non-Equivalence of Conditional and Converse

• The converse of a logical implication is the reversal of
the implication. i.e. the converse of p →q is q →p.
– e.g., The converse of “If Donald is a duck then

Donald is a bird.” is “If Donald is a bird then Donald is
a duck.”

18

4

Non-Equivalence of Conditional and Converse

p q p →q q→p (p →q)↔(q→p)

L3

T T

T F

F T

F F

Non-Equivalence of Conditional and Converse

p q p →q q→p (p →q)↔(q→p)

L3

T T T

T F F

F T T

F F T

Non-Equivalence of Conditional and Converse

p q p →q q→p (p →q)↔(q→p)

L3

21

T T T T

T F F T

F T T F

F F T T

Non-Equivalence of Conditional and Converse

p q p →q q→p (p →q)↔(q→p)

L3

22

T T T T T

T F F T F

F T T F F

F F T T T

Derivational Proof Techniques

• When compound propositions involve more and more
atomic components, the size of the truth table for the
compound propositions increases
– How many rows are required to construct the truth-

table of:
((q↔(p→r)) ∧ (¬(s∧r)∨¬t)) → (¬q→r) ((q↔(p→r)) ∧ (¬(s∧r)∨¬t)) → (¬q→r)

• 32 rows, each additional variable doubles the number of
rows

23L3

Equivalence Laws

• Identity Laws:
– p∧T ↔ p
– p∨F ↔ p

• Domination Laws:
– p∨T ↔ T
– p∧F ↔ F

• Idempotent Laws:
– p∨p ↔ p
– p∧p ↔ p

• Double negation:
– ¬¬p ↔ p

24

5

Equivalence Laws

• Commutative Laws:
– p∨q ↔ q∨p
– p∧q ↔ q∧p

• Associative Laws:
– (p∨q)∨r ↔ p∨(q∨r)
– (p∧q)∧r ↔ p∧(q∧r)

• Distributive Laws:
– p ∨ (q∧r) ↔ (p∨q) ∧ (p∨r)
– p ∧ (q∨r) ↔ (p∧q) ∨ (p∧r)

25

Tables of Logical Equivalences

L3

26

• Excluded middle
• Negating creates opposite
• Definition of implication in

terms of Not and Or

Equivalence Laws

• De Morgan’s:
¬(p∧q) ↔ ¬p ∨ ¬q
¬(p∨q) ↔ ¬p ∧ ¬q

• Trivial tautology/contradiction:
p ∨ ¬p ↔ T
p ∧ p ↔ F– p ∧ ¬p ↔ F

27

Augustus
De Morgan
(1806-1871)

DeMorgan Identities

• DeMorgan’s identities allow for simplification of
negations of complex expressions

• Conjunctional negation:
– ¬(p1∧p2∧…∧pn) ↔ (¬p1∨¬p2∨…∨¬pn)
– “It’s not the case that all are true iff one is false.”

• Disjunctional negation:
– ¬(p1∨p2∨…∨pn) ↔ (¬p1∧¬p2∧…∧¬pn)
– “It’s not the case that one is true iff all are false.”

28

Tautology example
Demonstrate that is a tautology using truth table of logical
equivalences

[¬p ∧(p ∨q)]→q

L3

Tautology by proof

[¬p ∧(p ∨q)]→q

L3

30

6

Tautology by proof

[¬p ∧(p ∨q)]→q

⇔ [(¬p ∧p)∨(¬p ∧q)]→q Distributive

L3

31

Tautology by proof

[¬p ∧(p ∨q)]→q

⇔ [(¬p ∧p)∨(¬p ∧q)]→q Distributive

⇔ [F ∨ (¬p ∧q)]→q ULE

L3

32

Tautology by proof

[¬p ∧(p ∨q)]→q

⇔ [(¬p ∧p)∨(¬p ∧q)]→q Distributive

⇔ [F ∨ (¬p ∧q)]→q ULE
⇔ [¬p ∧q]→q Identity

L3

33

Tautology by proof

[¬p ∧(p ∨q)]→q

⇔ [(¬p ∧p)∨(¬p ∧q)]→q Distributive

⇔ [F ∨ (¬p ∧q)]→q ULE
⇔ [¬p ∧q]→q Identity

⇔ ¬ [¬p ∧q] ∨ q ULE

L3

34

Tautology by proof

[¬p ∧(p ∨q)]→q

⇔ [(¬p ∧p)∨(¬p ∧q)]→q Distributive

⇔ [F ∨ (¬p ∧q)]→q ULE
⇔ [¬p ∧q]→q Identity

⇔ ¬ [¬p ∧q] ∨ q ULE

L3

35

⇔ [¬(¬p)∨ ¬q] ∨ q DeMorgan

Tautology by proof

[¬p ∧(p ∨q)]→q

⇔ [(¬p ∧p)∨(¬p ∧q)]→q Distributive

⇔ [F ∨ (¬p ∧q)]→q ULE
⇔ [¬p ∧q]→q Identity

⇔ ¬ [¬p ∧q] ∨ q ULE

L3

36

⇔ [¬(¬p)∨ ¬q] ∨ q DeMorgan

⇔ [p ∨ ¬q] ∨ q Double Negation

7

Tautology by proof

[¬p ∧(p ∨q)]→q

⇔ [(¬p ∧p)∨(¬p ∧q)]→q Distributive

⇔ [F ∨ (¬p ∧q)]→q ULE
⇔ [¬p ∧q]→q Identity

⇔ ¬ [¬p ∧q] ∨ q ULE

L3

37

⇔ [¬(¬p)∨ ¬q] ∨ q DeMorgan

⇔ [p ∨ ¬q] ∨ q Double Negation

⇔ p ∨ [¬q ∨q] Associative

Tautology by proof

[¬p ∧(p ∨q)]→q

⇔ [(¬p ∧p)∨(¬p ∧q)]→q Distributive

⇔ [F ∨ (¬p ∧q)]→q ULE
⇔ [¬p ∧q]→q Identity

⇔ ¬ [¬p ∧q] ∨ q ULE

L3

38

⇔ [¬(¬p)∨ ¬q] ∨ q DeMorgan

⇔ [p ∨ ¬q] ∨ q Double Negation

⇔ p ∨ [¬q ∨q] Associative

⇔ p ∨ [q ∨¬q] Commutative

Tautology by proof

[¬p ∧(p ∨q)]→q

⇔ [(¬p ∧p)∨(¬p ∧q)]→q Distributive

⇔ [F ∨ (¬p ∧q)]→q ULE
⇔ [¬p ∧q]→q Identity

⇔ ¬ [¬p ∧q] ∨ q ULE

L3

39

⇔ [¬(¬p)∨ ¬q] ∨ q DeMorgan

⇔ [p ∨ ¬q] ∨ q Double Negation

⇔ p ∨ [¬q ∨q] Associative

⇔ p ∨ [q ∨¬q] Commutative
⇔ p ∨ T ULE

Tautology by proof

[¬p ∧(p ∨q)]→q

⇔ [(¬p ∧p)∨(¬p ∧q)]→q Distributive

⇔ [F ∨ (¬p ∧q)]→q ULE
⇔ [¬p ∧q]→q Identity

⇔ ¬ [¬p ∧q] ∨ q ULE

L3

40

⇔ [¬(¬p)∨ ¬q] ∨ q DeMorgan

⇔ [p ∨ ¬q] ∨ q Double Negation

⇔ p ∨ [¬q ∨q] Associative

⇔ p ∨ [q ∨¬q] Commutative
⇔ p ∨ T ULE
⇔ T Domination

Defining Operators via Equivalences

• Using equivalences, we can define operators in terms of
other operators.
– Exclusive or: p⊕q ↔ (p∨q)∧¬(p∧q)

p⊕q ↔ (p∧¬q)∨(q∧¬p)
– Implies: p→q ↔ ¬p ∨ q

Bi diti l () ()– Biconditional: p↔q ↔ (p→q) ∧ (q→p)
p↔q ↔ ¬(p⊕q)

41

Review: Propositional Logic

• Atomic propositions: p, q, r, …
• Boolean operators: ¬ ∧ ∨ ⊕ →↔
• Compound propositions: s :≡ (p ∧ ¬q) ∨ r
• Equivalences: p∧¬q ⇔ ¬(p → q)
• Proving equivalences using:

– Truth tables.
– Symbolic derivations. p ⇔ q ⇔ r …

42

8

Propositional
Equivalence

Department of Computer & Information Sciences
Pakistan Institute of Engineering and Applied Sciences

Umar Faiz

http://www.pieas.edu.pk/umarfaiz/cis317

Discrete Mathematics

Predicate Logic

• Predicate logic is an extension of propositional logic.
• Propositional logic (recall) treats simple propositions

(sentences) as atomic entities.
• In contrast, predicate logic distinguishes the subject of a

sentence from its predicate.

44

Predicate Logic

• A predicate is a property or description of subjects in
the universe of discourse.
– Aslam is tall.
– The building is structurally sound.
– 17 is a prime number.

45

Predicate Logic

• In the sentence “The dog is sleeping”:
– The phrase “the dog” denotes the subject -

the object or entity that the sentence is about.
– The phrase “is sleeping” denotes the predicate- a

property that is true of the subject.
I di t l i di t i d l d f ti • In predicate logic, a predicate is modeled as a function
P(·) from objects to propositions.
– P(x) = “x is sleeping” (where x is any object).

46

Predicate Logic

• Convention: Lowercase variables x, y, z... denote
objects/entities; uppercase variables P, Q, R… denote
propositional functions (predicates).

• Applying a predicate P to an object x is the proposition
P(x). But the predicate P itself (e.g. P=“is sleeping”) is
not a proposition (not a complete sentence).

Topic #3 – Predicate Logic

not a proposition (not a complete sentence).
– e.g. if P(x) = “x is a prime number”,

P(3) is the proposition “3 is a prime number.”

47

Predicate Logic

• Quantifier Expressions:
– Quantifiers provide a notation that allows us to

quantify (count) how many objects in the universe of
discourse satisfy a given predicate.

– “∀” is the FOR∀LL or universal quantifier.
∀x P(x) means for all x in the u d P holds∀x P(x) means for all x in the u.d., P holds.

– “∃” is the ∃XISTS or existential quantifier.
∃x P(x) means there exists an x in the u.d. (that is, 1
or more) such that P(x) is true.

48

9

Predicate Logic

• The Universal Quantifier ∀:
– Example:

Let the u.d. of x be parking spaces at PIEAS.
Let P(x) be the predicate “x is full.”
Then the universal quantification of P(x), ∀x P(x), is
the proposition:the proposition:

• “All parking spaces at PIEAS are full.”
• i.e., “Every parking space at PIEAS is full.”
• i.e., “For each parking space at PIEAS, that space is full.”

49

Predicate Logic

• The Existential Quantifier ∃:
– Example:

Let the u.d. of x be parking spaces at PIEAS.
Let P(x) be the predicate “x is full.”
Then the existential quantification of P(x), ∃x P(x), is
the proposition:the proposition:

• “Some parking space at PIEAS is full.”
• “There is a parking space at PIEAS that is full.”
• “At least one parking space at PIEAS is full.”

50

Predicate Logic

• If R(x,y)=“x relies upon y,” express the following in
unambiguous English:
– ∀x(∃y R(x,y))=
– ∃y(∀x R(x,y))=

Everyone has someone to rely on.

There’s someone whom everyone relies
upon (including himself)!

Th ’ d h li – ∃x(∀y R(x,y))=

– ∀y(∃x R(x,y))=
– ∀x(∀y R(x,y))=

51

There’s some needy person who relies
upon everybody (including himself).

Everyone has someone who relies upon them.

Everyone relies upon everybody,
(including themselves)!

Predicate Logic

• Free Variables:
– An expression like P(x) is said to have a free variable x

(meaning, x is undefined).
– P(x,y) has 2 free variables, x and y.
– ∀x P(x,y) has 1 free variable, and one bound variable.
– An expression with zero free variables is a bona-fide

(actual) proposition.
– An expression with one or more free variables is still

only a predicate: e.g. let Q(y) = ∀x P(x,y)

52

Predicate Logic

• Binding:
– A variable is bound if it has a value or a quantifier is

“acting” on it.
– A quantifier (either ∀ or ∃) operates on an expression

having one or more free variables, and binds one or
more of those variables to produce an expression

),(yxQx∃

more of those variables, to produce an expression
having one or more bound variables.

– Example:

– x is bound, y is free.

)())()((yRyxQxPx ∀∨∧∃

Predicate Logic

• Scope of a Quantifier:
– The scope of a quantifier is the part of the statement

on which it is acting.
– Example:

)())()((yRyxQxPx ∀∨∧∃

scope x scope y

10

Predicate Logic

• Negations:
– We can also negate propositions with quantifiers.
– Two important equivalences:

)()(

)()(xPxxPx ¬∃≡¬∀

– It is not the case that for all x P(x) is true = there
must be an x for which P(x) is not true

– It is not true that there exists an x for which P(x) is
true = P(x) must be false for all x

)()(xPxxPx ¬∀≡¬∃

Predicate Logic

• Negation of Nested Quantifiers:
– To negate a quantifier, move negation to the right,

changing quantifiers as you go.
– Example:

¬∀x∃y∀z P(x,y,z) ≡ ∃x ∀y ∃z ¬P(x,y,z).

56

Predicate Logic

• Universes of Discourse (U.D.s):
– The collection of values that a variable x can take is

called x’s universe of discourse.
• e.g., let P(x)=“x+1>x”.
• We can then say, “For any number x, P(x) is true” instead of
• (0+1>0) ∧ (1+1>1) ∧ (2+1>2) ∧• (0+1>0) ∧ (1+1>1) ∧ (2+1>2) ∧ ...

57

Predicate Logic

• Nesting of Quantifiers:
– Example: Let the u.d. of x & y be people.
– Let L(x,y)=“x likes y”

• A predicate with two free variables

– Then ∃y L(x,y) = “There is someone whom x likes.”
• A predicate with one free variable, x

– Then ∀x (∃y L(x,y)) =
“Everyone has someone whom they like.”
• (A __________ with ___ free variables.)

58

Summary: Predicate Logic

• Objects x, y, z, …
• Predicates P, Q, R, … are functions mapping objects x to

propositions P(x).
• Multi-argument predicates P(x, y).
• Quantifiers: [∀x P(x)] :≡ “For all x’s, P(x).”

[∃ P()] ≡ “Th i h th t P() ”[∃x P(x)] :≡ “There is an x such that P(x).”
• Universes of discourse, bound & free vars.

59

