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Propositional Equivalence

• Two syntactically (i.e., textually) different compound 
propositions may be the semantically identical (i.e., have 
the same meaning).  We call them equivalent. 
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Tautologies, Contradictions, Contingencies

• Tautology:
– A compound proposition is called a tautology if no 

matter what truth values its atomic propositions have, 
its own truth value is T.  

• For example:  p ∨ ¬p  (Law of excluded middle)

Tautologies, Contradictions, Contingencies

• Contradiction:
– The opposite to a tautology, is a compound 

proposition that’s always false –a contradiction.
• For example: p ∧ ¬p 

Tautologies, Contradictions, Contingencies

• Contigency:
– On the other hand, a compound proposition whose 

truth value isn’t constant is called a contingency.
• For example: p → ¬p 

Tautologies and contradictions

The easiest way to see if a compound proposition is a 
tautology/contradiction is to use a truth table.
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Tautology Example

Example:
Demonstrate that is a tautology

[¬p ∧(p ∨q )]→q
1. Using a truth table – show that [¬p ∧(p ∨q )]→q is 

always true

L3

p q ¬p p ∨q ¬p ∧(p ∨q ) [¬p ∧(p ∨q )]→q

T T

T F
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F F

Tautology by Truth Table

p q ¬p p ∨q ¬p ∧(p ∨q ) [¬p ∧(p ∨q )]→q

T T F

L3
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Tautology by Truth Table

p q ¬p p ∨q ¬p ∧(p ∨q ) [¬p ∧(p ∨q )]→q

T T F T
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Tautology by Truth Table

p q ¬p p ∨q ¬p ∧(p ∨q ) [¬p ∧(p ∨q )]→q

T T F T F
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T F F T F
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F F T F F

Tautology by Truth Table

p q ¬p p ∨q ¬p ∧(p ∨q ) [¬p ∧(p ∨q )]→q

T T F T F T

L3

T F F T F T

F T T T T T

F F T F F T

Logical Equivalences

• Two compound propositions p, q are logically equivalent 
if their biconditional joining p ↔ q is a tautology.  Logical 
equivalence is denoted by p ⇔ q.
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Logical Equivalences

• Logical Equivalence of Conditional and Contrapositive:
– The contrapositive of a logical implication is the 

reversal of the implication, while negating both 
components.  

• i.e. the contrapositive of p →q  is  ¬q →¬p
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p q p →q p q ¬q ¬p ¬q→¬p

Logical Equivalences

• Logical Equivalence of Conditional and Contrapositive:
– The easiest way to check for logical equivalence is to 

see if the truth tables of both variants have identical 
last columns:

 p q p →q p q ¬q ¬p ¬q→¬p

T T T

T F F

F T T

F F T

Logical Equivalences

• Logical Equivalence of Conditional and Contrapositive:
– The easiest way to check for logical equivalence is to 

see if the truth tables of both variants have identical 
last columns:

 p q p →q p q ¬q ¬p ¬q→¬p

T T T T T F F

T F F T F T F

F T T F T F T

F F T F F T T

Logical Equivalences

• Logical Equivalence of Conditional and Contrapositive:
– The easiest way to check for logical equivalence is to 

see if the truth tables of both variants have identical 
last columns:

 p q p →q p q ¬q ¬p ¬q→¬p

T T T T T F F T

T F F T F T F F

F T T F T F T T

F F T F F T T T

Logical Equivalences

• Logical Equivalence of Conditional and Contrapositive:
– The easiest way to check for logical equivalence is to 

see if the truth tables of both variants have identical 
last columns:

 p q p →q p q ¬q ¬p ¬q→¬p

T T T T T F F T

T F F T F T F F

F T T F T F T T

F F T F F T T T

Non-Equivalence of Conditional and Converse

• The converse of a logical implication is the reversal of 
the implication.  i.e. the converse of p →q  is  q →p.
– e.g.,  The converse of “If Donald is a duck then 

Donald is a bird.” is “If Donald is a bird then Donald is 
a duck.”  

18
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Non-Equivalence of Conditional and Converse

p q p →q q→p (p →q)↔(q→p)

L3

T T

T F

F T

F F

Non-Equivalence of Conditional and Converse

p q p →q q→p (p →q)↔(q→p)

L3

T T T

T F F

F T T

F F T

Non-Equivalence of Conditional and Converse

p q p →q q→p (p →q)↔(q→p)

L3
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T T T T

T F F T

F T T F

F F T T

Non-Equivalence of Conditional and Converse

p q p →q q→p (p →q)↔(q→p)

L3
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T T T T T

T F F T F

F T T F F

F F T T T

Derivational Proof Techniques

• When compound propositions involve more and more 
atomic components, the size of the truth table for the 
compound propositions increases
– How many rows are required to construct the truth-

table of:
( (q↔(p→r )) ∧ (¬(s∧r)∨¬t) ) → (¬q→r ) ( (q↔(p→r )) ∧ (¬(s∧r)∨¬t) ) → (¬q→r ) 

• 32 rows, each additional variable doubles the number of 
rows

23L3

Equivalence Laws

• Identity Laws:             
– p∧T ↔ p      
– p∨F ↔ p

• Domination Laws:      
– p∨T ↔ T      
– p∧F ↔ F

• Idempotent Laws:       
– p∨p ↔ p       
– p∧p ↔ p

• Double negation:      
– ¬¬p ↔ p

24
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Equivalence Laws

• Commutative Laws:  
– p∨q ↔ q∨p    
– p∧q ↔ q∧p

• Associative Laws:          
– (p∨q)∨r ↔ p∨(q∨r)                            
– (p∧q)∧r ↔ p∧(q∧r)

• Distributive Laws:
– p ∨ (q∧r) ↔ (p∨q) ∧ (p∨r)
– p ∧ (q∨r) ↔ (p∧q) ∨ (p∧r)  

25

Tables of Logical Equivalences

L3
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• Excluded middle
• Negating creates opposite
• Definition of implication in 

terms of Not and Or

Equivalence Laws

• De Morgan’s:
¬(p∧q) ↔ ¬p ∨ ¬q
¬(p∨q) ↔ ¬p ∧ ¬q 

• Trivial tautology/contradiction:
p ∨ ¬p ↔ T         
p ∧ p ↔ F– p ∧ ¬p ↔ F
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Augustus
De Morgan
(1806-1871)

DeMorgan Identities

• DeMorgan’s identities allow for simplification of 
negations of complex expressions

• Conjunctional negation:
– ¬(p1∧p2∧…∧pn) ↔ (¬p1∨¬p2∨…∨¬pn)
– “It’s not the case that all are true iff one is false.”

• Disjunctional negation:
– ¬(p1∨p2∨…∨pn) ↔ (¬p1∧¬p2∧…∧¬pn)
– “It’s not the case that one is true iff all are false.”
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Tautology example 
Demonstrate that is a tautology using truth table of logical 
equivalences

[¬p ∧(p ∨q )]→q

L3

Tautology by proof

[¬p ∧(p ∨q )]→q

L3

30
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Tautology by proof

[¬p ∧(p ∨q )]→q  

⇔ [(¬p ∧p)∨(¬p ∧q)]→q Distributive

L3
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Tautology by proof

[¬p ∧(p ∨q )]→q  

⇔ [(¬p ∧p)∨(¬p ∧q)]→q Distributive

⇔ [ F ∨ (¬p ∧q)]→q ULE

L3
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Tautology by proof

[¬p ∧(p ∨q )]→q  

⇔ [(¬p ∧p)∨(¬p ∧q)]→q Distributive

⇔ [ F ∨ (¬p ∧q)]→q ULE
⇔ [¬p ∧q ]→q Identity

L3
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Tautology by proof

[¬p ∧(p ∨q )]→q  

⇔ [(¬p ∧p)∨(¬p ∧q)]→q Distributive

⇔ [ F ∨ (¬p ∧q)]→q ULE
⇔ [¬p ∧q ]→q Identity

⇔ ¬ [¬p ∧q ] ∨ q ULE

L3
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Tautology by proof

[¬p ∧(p ∨q )]→q  

⇔ [(¬p ∧p)∨(¬p ∧q)]→q Distributive

⇔ [ F ∨ (¬p ∧q)]→q ULE
⇔ [¬p ∧q ]→q Identity

⇔ ¬ [¬p ∧q ] ∨ q ULE

L3
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⇔ [¬(¬p)∨ ¬q ] ∨ q DeMorgan

Tautology by proof

[¬p ∧(p ∨q )]→q  

⇔ [(¬p ∧p)∨(¬p ∧q)]→q Distributive

⇔ [ F ∨ (¬p ∧q)]→q ULE
⇔ [¬p ∧q ]→q Identity

⇔ ¬ [¬p ∧q ] ∨ q ULE

L3
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⇔ [¬(¬p)∨ ¬q ] ∨ q DeMorgan

⇔ [p ∨ ¬q ] ∨ q Double Negation
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Tautology by proof

[¬p ∧(p ∨q )]→q  

⇔ [(¬p ∧p)∨(¬p ∧q)]→q Distributive

⇔ [ F ∨ (¬p ∧q)]→q ULE
⇔ [¬p ∧q ]→q Identity

⇔ ¬ [¬p ∧q ] ∨ q ULE

L3
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⇔ [¬(¬p)∨ ¬q ] ∨ q DeMorgan

⇔ [p ∨ ¬q ] ∨ q Double Negation

⇔ p ∨ [¬q ∨q ] Associative

Tautology by proof

[¬p ∧(p ∨q )]→q  

⇔ [(¬p ∧p)∨(¬p ∧q)]→q Distributive

⇔ [ F ∨ (¬p ∧q)]→q ULE
⇔ [¬p ∧q ]→q Identity

⇔ ¬ [¬p ∧q ] ∨ q ULE

L3

38

⇔ [¬(¬p)∨ ¬q ] ∨ q DeMorgan

⇔ [p ∨ ¬q ] ∨ q Double Negation

⇔ p ∨ [¬q ∨q ] Associative

⇔ p ∨ [q ∨¬q ] Commutative

Tautology by proof

[¬p ∧(p ∨q )]→q  

⇔ [(¬p ∧p)∨(¬p ∧q)]→q Distributive

⇔ [ F ∨ (¬p ∧q)]→q ULE
⇔ [¬p ∧q ]→q Identity

⇔ ¬ [¬p ∧q ] ∨ q ULE

L3
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⇔ [¬(¬p)∨ ¬q ] ∨ q DeMorgan

⇔ [p ∨ ¬q ] ∨ q Double Negation

⇔ p ∨ [¬q ∨q ] Associative

⇔ p ∨ [q ∨¬q ] Commutative
⇔ p ∨ T ULE

Tautology by proof

[¬p ∧(p ∨q )]→q  

⇔ [(¬p ∧p)∨(¬p ∧q)]→q Distributive

⇔ [ F ∨ (¬p ∧q)]→q ULE
⇔ [¬p ∧q ]→q Identity

⇔ ¬ [¬p ∧q ] ∨ q ULE

L3
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⇔ [¬(¬p)∨ ¬q ] ∨ q DeMorgan

⇔ [p ∨ ¬q ] ∨ q Double Negation

⇔ p ∨ [¬q ∨q ] Associative

⇔ p ∨ [q ∨¬q ] Commutative
⇔ p ∨ T ULE
⇔ T Domination

Defining Operators via Equivalences

• Using equivalences, we can define operators in terms of 
other operators.
– Exclusive or:   p⊕q ↔ (p∨q)∧¬(p∧q)

p⊕q ↔ (p∧¬q)∨(q∧¬p)
– Implies:           p→q ↔ ¬p ∨ q

Bi diti l  ( ) ( )– Biconditional: p↔q ↔ (p→q) ∧ (q→p)
p↔q ↔ ¬(p⊕q)

41

Review: Propositional Logic

• Atomic propositions: p, q, r, … 
• Boolean operators: ¬ ∧ ∨ ⊕ →↔
• Compound propositions: s :≡ (p ∧ ¬q) ∨ r
• Equivalences: p∧¬q ⇔ ¬(p → q)
• Proving equivalences using:

– Truth tables.
– Symbolic derivations. p ⇔ q ⇔ r … 

42



8

Propositional 
Equivalence

Department of Computer & Information Sciences
Pakistan Institute of Engineering and Applied Sciences

Umar Faiz

http://www.pieas.edu.pk/umarfaiz/cis317

Discrete Mathematics

Predicate Logic

• Predicate logic is an extension of propositional logic.
• Propositional logic (recall) treats simple propositions 

(sentences) as atomic entities.
• In contrast, predicate logic distinguishes the subject of a 

sentence from its predicate. 

44

Predicate Logic

• A predicate is a property or description of subjects in 
the universe of discourse.  
– Aslam is tall.
– The building is structurally sound.
– 17 is a prime number.
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Predicate Logic

• In the sentence “The dog is sleeping”:
– The phrase “the dog” denotes the subject -

the object or entity that the sentence is about.
– The phrase “is sleeping” denotes the predicate- a 

property that is true of the subject.
I  di t  l i   di t  i  d l d   f ti  • In predicate logic, a predicate is modeled as a function 
P(·) from objects to propositions.
– P(x) = “x is sleeping” (where x is any object).
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Predicate Logic

• Convention:  Lowercase variables x, y, z... denote 
objects/entities; uppercase variables P, Q, R… denote 
propositional functions (predicates).

• Applying a predicate P to an object x is the proposition 
P(x).  But the predicate P itself (e.g. P=“is sleeping”) is 
not a proposition (not a complete sentence).

Topic #3 – Predicate Logic

not a proposition (not a complete sentence).
– e.g. if P(x) = “x is a prime number”,

P(3) is the proposition “3 is a prime number.”
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Predicate Logic

• Quantifier Expressions:
– Quantifiers provide a notation that allows us to 

quantify (count) how many objects in the universe of 
discourse satisfy a given predicate.

– “∀” is the FOR∀LL or universal quantifier.
∀x P(x) means for all x in the u d  P holds∀x P(x) means for all x in the u.d., P holds.

– “∃” is the ∃XISTS or existential quantifier.
∃x P(x) means there exists an x in the u.d. (that is, 1 
or more) such that P(x) is true.

48
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Predicate Logic

• The Universal Quantifier ∀:
– Example: 

Let the u.d. of x be parking spaces at PIEAS.
Let P(x) be the predicate “x is full.”
Then the universal quantification of P(x), ∀x P(x), is 
the proposition:the proposition:

• “All parking spaces at PIEAS are full.”
• i.e., “Every parking space at PIEAS is full.”
• i.e., “For each parking space at PIEAS, that space is full.”
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Predicate Logic

• The Existential Quantifier ∃:
– Example: 

Let the u.d. of x be parking spaces at PIEAS.
Let P(x) be the predicate “x is full.”
Then the existential quantification of P(x), ∃x P(x), is 
the proposition:the proposition:

• “Some parking space at PIEAS is full.”
• “There is a parking space at PIEAS that is full.”
• “At least one parking space at PIEAS is full.”
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Predicate Logic

• If R(x,y)=“x relies upon y,” express the following in 
unambiguous English:
– ∀x(∃y R(x,y))=
– ∃y(∀x R(x,y))=

Everyone has someone to rely on.

There’s someone whom everyone relies 
upon (including himself)!

Th ’   d   h  li  – ∃x(∀y R(x,y))=

– ∀y(∃x R(x,y))=
– ∀x(∀y R(x,y))=

51

There’s some needy person who relies 
upon everybody (including himself).

Everyone has someone who relies upon them.

Everyone relies upon everybody, 
(including themselves)!

Predicate Logic

• Free Variables:
– An expression like P(x) is said to have a free variable x 

(meaning, x is undefined).
– P(x,y) has 2 free variables, x and y.
– ∀x P(x,y) has 1 free variable, and one bound variable.  
– An expression with zero free variables is a bona-fide 

(actual) proposition.
– An expression with one or more free variables is still 

only a predicate: e.g. let Q(y) = ∀x P(x,y)
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Predicate Logic

• Binding:
– A variable is bound if it has a value or a quantifier is 

“acting” on it. 
– A quantifier (either ∀ or ∃) operates on an expression 

having one or more free variables, and binds one or 
more of those variables  to produce an expression 

),( yxQx∃

more of those variables, to produce an expression 
having one or more bound variables.

– Example:

– x is bound, y is free.

)())()(( yRyxQxPx ∀∨∧∃

Predicate Logic

• Scope of a Quantifier:
– The scope of a quantifier is the part of the statement 

on which it is acting.                      
– Example:

)())()(( yRyxQxPx ∀∨∧∃

scope x scope y
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Predicate Logic

• Negations:
– We can also negate propositions with quantifiers. 
– Two important equivalences:

)()(

)()( xPxxPx ¬∃≡¬∀

– It is not the case that for all x P(x) is true = there 
must be an x for which P(x) is not true

– It is not true that there exists an x for which P(x) is 
true = P(x) must be false for all x

)()( xPxxPx ¬∀≡¬∃

Predicate Logic

• Negation of Nested Quantifiers:
– To negate a quantifier, move negation to the right, 

changing quantifiers as you go.
– Example:

¬∀x∃y∀z P(x,y,z)  ≡ ∃x ∀y ∃z ¬P(x,y,z).
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Predicate Logic

• Universes of Discourse (U.D.s):
– The collection of values that a variable x can take is 

called x’s universe of discourse.
• e.g., let P(x)=“x+1>x”.  
• We can then say, “For any number x, P(x) is true” instead of 
• (0+1>0) ∧ (1+1>1) ∧ (2+1>2) ∧• (0+1>0) ∧ (1+1>1) ∧ (2+1>2) ∧ ...
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Predicate Logic

• Nesting of Quantifiers:
– Example: Let the u.d. of x & y be people.
– Let L(x,y)=“x likes y” 

• A predicate with two free variables

– Then ∃y L(x,y) = “There is someone whom x likes.”
• A predicate with one free variable, x

– Then ∀x (∃y L(x,y)) =
“Everyone has someone whom they like.”
• (A __________ with ___ free variables.)
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Summary: Predicate Logic

• Objects x, y, z, … 
• Predicates P, Q, R, … are functions mapping objects x to 

propositions P(x).
• Multi-argument predicates P(x, y).
• Quantifiers: [∀x P(x)] :≡ “For all x’s, P(x).” 

[∃  P( )] ≡ “Th  i    h th t P( ) ”[∃x P(x)] :≡ “There is an x such that P(x).”
• Universes of discourse, bound & free vars.
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