Department of Computer & Information Sciences .
Pakistan Institute of Engineering and Applied Sciences )

Propositional
Equivalence

Discrete Mathematics Umar Faiz

http://www.pieas.edu.pk/umarfaiz/cis 143

Propositional Equivalence

» Two syntactically (i.e., textually) different compound
propositions may be the semantically identical (i.e., have
the same meaning). We call them equivalent.

Tautologies, Contradictions, Contingencies
* Tautology:

— A compound proposition is called a tautology if no
matter what truth values its atomic propositions have,
its own truth value is T.

* For example: p v =ip (Law of excluded middle)

Tautologies, Contradictions, Contingencies
» Contradiction:

— The opposite to a tautology, is a compound
proposition that’s always false —a contradiction.

* For example: p A —p

Tautologies, Contradictions, Contingencies
» Contigency:
— On the other hand, a compound proposition whose

truth value isn’t constant is called a contingency.
* For example: p — —p

Tautologies and contradictions

The easiest way to see if a compound proposition is a
tautology/contradiction is to use a truth table.

p —P |pV—p

-n
-

-n
—
al




Tautology Example

Example:
Demonstrate that is a tautology
[=p A(P vq)]—>q
I. Using a truth table — show that [-p A(p vq )]—q is
always true

“p | pvqg | “pA(PVg) [op A(p vq)]l—9

M| |dfo
— ||

'n
-n

Tautology by Truth Table

plalp|pvg| palpvq) [op A(p vq)l—>g
TIT]F
TIF]F
FIT]T
FIF]T

Tautology by Truth Table

plglp|pPveg| PA(pvq) [7p Alp vq)]—>q
T|T)F| T
TIFyF| T
FIT)T| T
FIFT | F

Tautology by Truth Table

Plqg]P|PVveg| PA(PVq) [7p A(p vq)]—q
TIT)F| T F
TIFyF| T F
FITlT | T T
FIFlT | F F

Tautology by Truth Table

plal | pvg| palpvq) [op A(p vq)]—>g
TITPF| T F T
TIFLF| T F T
FITPT| T T T
FIFPT| F F T

Logical Equivalences

* Two compound propositions p, q are logically equivalent
if their biconditional joining p <> q is a tautology. Logical
equivalence is denoted by p <> q.




Logical Equivalences

* Logical Equivalence of Conditional and Contrapositive:
— The contrapositive of a logical implication is the
reversal of the implication, while negating both

components.
* i.e. the contrapositive of p —>q is =q >-p

Logical Equivalences

* Logical Equivalence of Conditional and Contrapositive:

— The easiest way to check for logical equivalence is to
see if the truth tables of both variants have identical
last columns:

T T

E
T
F

n oo
4 4 n 4

Logical Equivalences

* Logical Equivalence of Conditional and Contrapositive:

— The easiest way to check for logical equivalence is to
see if the truth tables of both variants have identical
last columns:

T T

T

- 4 m A
B
- m -+ =
4 4 m .

T F T
F T F
FF F

Logical Equivalences

* Logical Equivalence of Conditional and Contrapositive:

— The easiest way to check for logical equivalence is to
see if the truth tables of both variants have identical
last columns:

T T

T

<4 4 m 4
n o4 m oA
4 m 4 m
4 4 m
4 4 m 4

T F T
F T F
FF F

Logical Equivalences

* Logical Equivalence of Conditional and Contrapositive:
— The easiest way to check for logical equivalence is to
see if the truth tables of both variants have identical
last columns:

-n-n_._'.
—|—|m—|I

4 4 m =

Non-Equivalence of Conditional and Converse

* The converse of a logical implication is the reversal of
the implication. i.e. the converse of p —>q is q —p.
— e.g., The converse of “If Donald is a duck then
Donald is a bird.” is “If Donald is a bird then Donald is
a duck.”




Non-Equivalence of Conditional and Converse

L R
nod oo

Non-Equivalence of Conditional and Converse

nom o4
n oA om o
4 4 m o+

Non-Equivalence of Conditional and Converse

mom o4 A
n 4 oA
-4 4 m o+
B

Non-Equivalence of Conditional and Converse

L R
n o4 oA
-4 A4 m o+
=l 4
4 mn om o

Derivational Proof Techniques

* When compound propositions involve more and more
atomic components, the size of the truth table for the
compound propositions increases

— How many rows are required to construct the truth-
table of:

((ge(p—r)) A (—(sar)v—t) ) = (—gq—or)
* 32 rows, each additional variable doubles the number of
rows

2313

Equivalence Laws

Identity Laws:
—-pAT & p
-pvFeop
Domination Laws:
-pvT T
-pAFF
Idempotent Laws:
—PVP P
~PAP P
Double negation:
- PP




Equivalence Laws

Commutative Laws:

—Pvq <> qvp

= PAQ € AP

Associative Laws:

= (pva)vr < pv(qvr)

— (PAQ)AT <> PA(qAr)
* Distributive Laws:

= pV(grr) © (pvq) A (pvr)
= p A (qvr) © (pAg) Vv (pAr)

Tables of Logical Equivalences

p. 17, Rosen

TABLE 6 Some Useful
Logical Equivalences,

+ Excluded middle AVEE TR § ULE 1

. Negating creates opposite P A P —_— F ULE 2

« Definition of implication in (P — @) <= ( psq) ULE 3
terms of Not and Or

Equivalence Laws
* De Morgan’s:
—(pAQ) <> —p Vv —q
—(pvq) &> —p A —q
* Trivial tautology/contradiction:
pv—pcT
-pA—peF

Augustus
De Morgan
(1806-1871)

DeMorgan Identities
DeMorgan’s identities allow for simplification of
negations of complex expressions
Conjunctional negation:
— =(pIAP2A...APN) <> (—plv—p2v...v—pn)
— “It’s not the case that all are true iff one is false.”
Disjunctional negation:
—=(plvp2v...vpn) <> (—plA—p2A...A—pN)
— “It’s not the case that one is true iff all are false.”

Tautology example

Demonstrate that is a tautology using truth table of logical
equivalences

[=p AP vq)]—>q

Tautology by proof
[ AP va)]—>q




Tautology by proof

[=p AP vq)]—>9

& [(=p AP)V (=P AQ)]—>q Distributive

Tautology by proof

[=p AP vq)]—>q
& [(=p AP)V(=p AQ)]—q Distributive
< [FV (o r9l—>q ULE

Tautology by proof

Tautology by proof

[~ AP vq)]—g
< [(=p AP)V(=p AQ)]—9 Distributive
S [FV(=p Ag)l—q ULE
<[P Agl-g Identity
en[paqlvg ULE

[=p Alb vq)]—>9
< [(=p AP)V (=P AQ)]—>q Distributive
& [FV(=p Ag)l>g ULE
<[P Arql-g Identity
Tautology by proof
[=p AP va)]—>9
& [(=p AP)V(=p AQ)]—=q Distributive
& [FV (mp Ag)]l—9q ULE
& [P rql—g Identity
e -[prqlvg ULE
< [~(pvqlvg DeMorgan

Tautology by proof

[=p Alp vq)]l—q
& [(=p AP)V(=p AQ)]—>q Distributive
S [FV (mp Ag)l—9q ULE
& [prql—g Identity
& -[prglvg ULE
< [(p)vqlvg DeMorgan

S[pvqlvg Double Negation




Tautology by proof

[=p AP vq)]—>9

& [(=p AP)V(=p AQ)]—>q Distributive
< [FV (mp Ag)]l—9q ULE

& [P rgl—g Identity
<-[prqlvg ULE

& [~(=p)vq]lVvg DeMorgan

e[pvqlvg
epviqvq]

Double Negation
Associative

Tautology by proof

[=p A(p vq)]—>q
& [(=p AP)V(—p AQ)]—>q Distributive
& [FV (mp Ag)l—g ULE
& [P rql=g Identity
©-[pAqlvg ULE
& [H(=p)vqlVvgq DeMorgan

<[pv-qlvg Double Negation
& pviqvq] Associative
o pvilgvq] Commutative

Tautology by proof

[=p Alb vq)]—>9
< [(=p AP)V(=p AQ)]—q Distributive
S [FV (=p AQ)l—q ULE
<[P Arql-g Identity
en[paqlvg ULE
& [H(p)vq]lVvyq DeMorgan

epv-qlvg Double Negation
&S pvqvgl Associative
epvigvql Commutative
<opvT ULE

Tautology by proof

[~ AP vq)]—g
< [(=p AP)V(=p AQ)]—9 Distributive
S [FV(=p Ag)l—q ULE
<[P Agl-g Identity
en[paqlvg ULE
& [H(=p)vqlVvyq DeMorgan

<pv-qlvg Double Negation
S pvqvgl Associative
©pvigvql Commutative
<SpvT ULE

= Domination

Defining Operators via Equivalences
* Using equivalences, we can define operators in terms of
other operators.
— Exclusive or:  p@q <> (pvq)A—(pAq)
p®q <> (pA—q)V(qr—p)
— Implies: p—>q<>—pVvq
— Biconditional: p<>q <> (p—q) A (9—p)
pe>q <> —(pDq)

a1

Review: Propositional Logic
Atomic propositions: p, q, I, ...
Boolean operators: = A vV @ — <>
Compound propositions: s :== (p A —q) V I
Equivalences: pA—q < —(p — q)
Proving equivalences using:
— Truth tables.
— Symbolic derivations. p<> q < r ...

42




Department of Computer & Information Sciences .
Pakistan Institute of Engineering and Applied Sciences )

Propositional
Equivalence

Discrete Mathematics Umar Faiz

http://www.pieas.edu.pk/umarfaiz/cis317

Predicate Logic

* Predicate logic is an extension of propositional logic.

* Propositional logic (recall) treats simple propositions
(sentences) as atomic entities.

* In contrast, predicate logic distinguishes the subject of a
sentence from its predicate.

a4

Predicate Logic
* A predicate is a property or description of subjects in
the universe of discourse.
— Aslam is tall.
— The building is structurally sound.
— 17 is a prime number.

a5

Predicate Logic

* In the sentence “The dog is sleeping”:

— The phrase “the dog” denotes the subject -
the object or entity that the sentence is about.

— The phrase “is sleeping” denotes the predicate- a
property that is true of the subject.

* In predicate logic, a predicate is modeled as a function
P( ) from objects to propositions.

— P(x) = “x is sleeping” (where x is any object).

a6

Predicate Logic

» Convention: Lowercase variables x, y, z... denote
objects/entities; uppercase variables P, Q, R... denote
propositional functions (predicates).

» Applying a predicate P to an object x is the proposition
P(x). But the predicate P itself (e.g. P="is sleeping”) is
not a proposition (not a complete sentence).

—e.g. if P(x) = “x is a prime number”,
P(3) is the proposition “3 is a prime number.”

47

Predicate Logic

* Quantifier Expressions:

— Quantifiers provide a notation that allows us to
quantify (count) how many objects in the universe of
discourse satisfy a given predicate.

— *“V” is the FORVLL or universal quantifier.

Vx P(x) means for all x in the u.d., P holds.

—*“3” is the IXISTS or existential quantifier.
3Ix P(x) means there exists an x in the u.d. (that is, |
or more) such that P(x) is true.

a8




Predicate Logic

¢ The Universal Quantifier V:
— Example:
Let the u.d. of x be parking spaces at PIEAS.
Let P(x) be the predicate “x is full.”
Then the universal quantification of P(x), ¥x P(x), is
the proposition:
* “All parking spaces at PIEAS are full.”
* i.e., “Every parking space at PIEAS is full.”
* i.e,, “For each parking space at PIEAS, that space is full.”

a9

Predicate Logic

¢ The Existential Quantifier 3:
— Example:
Let the u.d. of x be parking spaces at PIEAS.
Let P(x) be the predicate “x is full.”
Then the existential quantification of P(x), 3x P(x), is
the proposition:
* “Some parking space at PIEAS is full.”
* “There is a parking space at PIEAS that is full.”
* “At least one parking space at PIEAS is full.”

Predicate Logic

If R(%,y)="“x relies upon y,” express the following in
unambiguous English:

- VXGY R(X,y))= Everyone has someone to rely on.

— Jy(Vx R(x,y))= There’s someone whom everyone relies

upon (including himself)!

- Ix(Vy R(x,y))= There’s some nee‘dy person Yvho relies
upon everybody (including himself).

— Vy(3x R(x,y))= Everyone has someone who relies upon them.

— Vx(Vy R(x,y))= Everyone relies upon everybody,
(including themselves)!

Predicate Logic
* Free Variables:

— An expression like P(x) is said to have a free variable x
(meaning, x is undefined).

— P(x,y) has 2 free variables, x and y.

— Vx P(x,y) has | free variable, and one bound variable.

— An expression with zero free variables is a bona-fide
(actual) proposition.

— An expression with one or more free variables is still
only a predicate: e.g. let Q(y) = Vx P(x,y)

Predicate Logic
* Binding:
— A variable is bound if it has a value or a quantifier is
“acting” on it3x Q(x,y)

— A quantifier (either V or 3) operates on an expression
having one or more free variables, and binds one or
more of those variables, to produce an expression
having one or more bound variables.

— Example: 3x (P(x) AQ(X)) v VY R(y)

— X is bound, y is free.

Predicate Logic
* Scope of a Quantifier:

— The scope of a quantifier is the part of the statement
on which it is acting.

— Example:
I (PO)AQ(X)) v VY R(Y)
- (-

scope x scope y




Predicate Logic
* Negations:
— We can also negate propositions with quantifiers.
— Two important equivalences:
—VxP(x) = 3Ix—P(x)

—3IxP(x) = Vx=P(x)
— Itis not the case that for all x P(x) is true = there
must be an x for which P(x) is not true

— It is not true that there exists an x for which P(x) is
true = P(x) must be false for all x

Predicate Logic

* Negation of Nested Quantifiers:
— To negate a quantifier, move negation to the right,
changing quantifiers as you go.
— Example:
—VxJyVz P(xy,z) = Ix Vy Iz —P(x,,z).

Predicate Logic

* Universes of Discourse (U.D.s):
— The collection of values that a variable x can take is
called x’s universe of discourse.
* e.g, let P(x)="“x+1>x".
* We can then say, “For any number x, P(x) is true” instead of
« 0+150) A (I+1>1) A 2+152) A ..

Predicate Logic

* Nesting of Quantifiers:

— Example: Let the u.d. of x & y be people.

— Let L(x,y)="x likes y”
* A predicate with two free variables

— Then Ty L(x,y) = “There is someone whom x likes.”
* A predicate with one free variable, x

— Then Vx (Jy L(x)y)) =
“Everyone has someone whom they like.”

(A with __ free variables.)

Summary: Predicate Logic

* Objects x, Y, z, ...

* Predicates P, Q, R, ... are functions mapping objects x to
propositions P(x).

* Multi-argument predicates P(x, y).

* Quantifiers: [Vx P(x)] := “For all X’s, P(x).”
[3x P(x)] := “There is an x such that P(x).”

¢ Universes of discourse, bound & free vars.

10



